ON A FRIEDRICHS EXTENSION RELATED TO UNBOUNDED SUBNORMAL OPERATORS
نویسندگان
چکیده
منابع مشابه
Unbounded operators, Friedrichs’ extension theorem
Explicit naming of the domain of an unbounded operator is often suppressed, instead writing T1 ⊂ T2 when T2 is an extension of T1, in the sense that the domain of T2 contains that of T1, and the restriction of T2 to the domain of T1 agrees with T1. An operator T ′, D′ is a sub-adjoint to an operator T,D when 〈Tv,w〉 = 〈v, T ′w〉 (for v ∈ D, w ∈ D′) For D dense, for given D′ there is at most one T...
متن کاملUnbounded operators and the Friedrichs extension
In this note, by A ⊂ B, I mean that A is contained in B, and it may be that A = B; usually I write this by A ⊆ B, but A ⊂ B fits with the usual notation for saying that an operator is an extension of another. In this note, unless we say otherwise H denotes a Hilbert space over C, and we do not presume H to be separable. We shall write the inner product 〈·, ·〉 on H as conjugate linear in the sec...
متن کاملLifting strong commutants of unbounded subnormal operators
Various theorems on lifting strong commutants of unbounded sub-normal (as well as formally subnormal) operators are proved. It is shown that the strong symmetric commutant of a closed symmetric operator S lifts to the strong commutant of some tight selfadjoint extension of S. Strong symmetric commutants of orthogonal sums of subnormal operators are investigated. Examples of (unbounded) irreduci...
متن کاملExtension of Spectral Scales to Unbounded Operators
We extend the notion of a spectral scale to n-tuples of unbounded operators affiliated with a finite von Neumann Algebra. We focus primarily on the single-variable case and show that many of the results from the bounded theory go through in the unbounded situation. We present the currently available material on the unbounded multivariable situation. Sufficient conditions for a set to be a spect...
متن کاملFriedrichs Extension Theorem
Some notes on the Friedrichs Extension Theorem, for MATH 7130, Spring 2010.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Glasgow Mathematical Journal
سال: 2006
ISSN: 0017-0895,1469-509X
DOI: 10.1017/s001708950500282x